Search results for "Rule mining"
showing 2 items of 2 documents
Using Tsetlin Machine to discover interpretable rules in natural language processing applications
2021
Tsetlin Machines (TM) use finite state machines for learning and propositional logic to represent patterns. The resulting pattern recognition approach captures information in the form of conjunctive clauses, thus facilitating human interpretation. In this work, we propose a TM-based approach to three common natural language processing (NLP) tasks, namely, sentiment analysis, semantic relation categorization and identifying entities in multi-turn dialogues. By performing frequent itemset mining on the TM-produced patterns, we show that we can obtain a global and a local interpretation of the learning, one that mimics existing rule-sets or lexicons. Further, we also establish that our TM base…
Overview on Sequential Mining Algorithms and Their Extensions
2018
The main purpose of data mining is to extract hidden, important and nontrivial information from a database. Sequential Pattern Mining is a data mining technique that aims to obtain and analyze frequent subsequences from sequences of events or items with or without time constraint. The importance of a sequence can be measured based on different factors such as the frequency of their occurrence, their length and also their profit. The pattern mining or the discovery of important and unexpected patterns and information was first introduced in 1990 with the well-known Apriori algorithm. Then, and after many studies on frequent pattern mining, a new approach appeared: Sequential Pattern Mining. …